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Abstract—Bounds on optimal guessing moments serve to Kontoyiannis and Verdd [8] studied the behavior of the
improve non-asymptotic bounds on the cumulant generating pest achievable rate and other fundamental limits in véeiab
function of the codeword lengths for fixed-to-variable optmal rate lossless source compression without prefix conssaint
lossless source coding without prefix constraints. Non-asyptotic . . L
bounds on the reliability function of discrete memoryless surces I,n the nor!-asymptotlc regime, the fundamenta}l I'm'_ts of
are presented as well. Lower bounds on the cumulant genera{fg f|Xed't0'Var|ab|e |OSS|eSS CompreSSIon W|th and W|thoef|pr
function of the codeword lengths are given, by means of the constraints were shown to be tightly coupled. Reference [8]

smooth Reényi entropy, for source codes that allow decoding gbtains non-asymptotic upper and lower bounds on the distri

errors. bution of codeword lengths, along with a rigorous proof @& th
Index Terms — Cumulant generating function, losslesgaussian approximation put forward in 1962 by Strassen [17]
source coding, Rényi information measures. for memoryless sources. An alternative approach was fedbw

by Courtade and Verd( in [5], where they derived non-
asymptotic bounds for the normalized cumulant generating
One of the major achievements in information theory is thfeinction of the codeword lengths for optimal variable-léng
development of lossless data compression algorithms,tend lbssless codes without prefix constraints; these boundssack
derivation of the fundamental limits that establish thehleist in [5] to obtain simple proofs of the asymptotic normality
achievable compression efficiency that is compatible witgmd the reliability function of memoryless sources allayvin
perfect data recovery. For uniquely-decodable losslessceo countably infinite alphabets.
coding, Campbell ([3], [4]) proposed the normalized cumtila  In [10], Kostinaet al. studied the fundamental limits of the
generating function of the codeword lengths as a genetigliza minimum average length of lossless and lossy variabletteng
to the frequently used design criterion of normalized ageracompression, allowing a nonzero error probabilite [0, 1)
code length. Campbell’s motivation in [3] was to control théor almost lossless compression. The bounds in [10] were
contribution of the longer codewords via a free parameter irsed to obtain a Gaussian approximation on the speed of
the cumulant generating function: if the value of this paggéen convergence of the minimum average length, which was shown
tends to zero, then the resulting design criterion becomigsbe quite accurate for all but small blocklengths. In [7dg&
the normalized average code length; on the other hand, dayd Yamamoto followed an information-spectrum approach to
increasing the value of the free parameter, the penalty folotain asymptotic properties of the codeword lengths fefipr
longer codewords becomes more severe, and the resulfiixgd-to-variable source codes, allowing decoding errorss
code optimization yields a reduction in the fluctuationshe t work was refined in the non-asymptotic setting by Kuzuoka
codeword lengths. In [3], asymptotically tight upper angidéo [9], which bounds the cumulant generating function of the
bounds on the minimum normalized cumulant generatimpdeword lengths via the smooth Rényi entropy.
function were obtained for discrete memoryless stationarySection Il defines the Rényi measures used in this paper.
sources with finite alphabet. These bounds, expressediisteSection Ill provides improved bounds on the normalized
of the Rényi entropy, imply that for sufficiently long soarc cumulant generating function of the codeword lengths for
sequences, it is possible to make the normalized cumuldimed-to-variable optimal codes, and on the non-asymptotic
generating function of the codeword lengths approach theiability function of discrete memoryless sources, tegting
Rényi entropy as closely as desired by a proper fixed-tthe bounds by Courtade and Verdl [5]. Due to space limita-
variable uniguely-decodable source code; moreover, aegeav tions, proofs are omitted here and appear in [15, Section 4].
result in [3] shows that there is no uniquely-decodable aur
code for which the normalized cumulant generating funabibn
its codeword lengths lies below the Rényi entropy. In addjt =~ The information measures used in this paper apply to
this type of bounds was studied in the context of other variodiscrete random variables. All the definitions in this smcti
coding problems, including guessing. extend in a natural way to random vectors.

|I. INTRODUCTION

Il. UNCONDITIONAL AND SMOOTH RENYI ENTROPY



Definition 1: [12] Let X be a discrete random variable Definition 5: [19] Given a probability mass functioRx on
taking values on a finite or countably infinite s& and let X, a variable-length lossless source cod@jsefficientif for
Px be its probability mass function. The Rényi entropy odll (a,b) € X2,

ordera € (0,1) U (1,00) is glveT by ((f(a) < £(f (b)) — Px(a) > Px(b). )
H,(X)=H,(Px) = T log Z P (z). (1) Definition 6: [19] Given a probability mass functioRx on
- TEX X, a variable-length lossless source code&’js-optimal if it

By its continuous extension, is both CompaCt and)X'eﬂ:iCient.

The optimality in Definition 6 is justified in Proposition 1.

Hoy(X) =log |{z € X: Px(z) > 0}, (2) Let f3: ¥ — {0,1}* be a Px-optimal variable-length

H(X)=H(X), (3) lossless source code. i¥] < oo, then
Ho(X) =1 4 a) o is assigned to the most likely elementin
0o(X) = log max Py (z) ) b) All the 2¢ binary strings of lengtt? are assigned to the
zeX 2¢-th through(2¢+! — 1)-th most likely elements wittf €
Another Rényi information measure used in this paperisthe {1, ... |log,(1 + |X]|)] — 1}. For example, 0 and 1 (or 1
smooth Rényi entropy, introduced by Renner and Wolf [14] and 0) are assigned, respectively, to the second and third
(after a different definition in [13]). most likely elements int.

Definition 2: [14] Let X be a discrete random variablec) If log,(1+|X]) is not an integer, then codewords of length
taking values onY, and let Px denote the probability mass |log, (14 |X|)] are assigned to each of the remaining
function of X. Let « € (0,1) U (1,00) ande € [0,1). The |x| — 2ll082(1+1XD] elements inY.
e-smooth Rnyi entropy of order is given by As long as|X| > 1, there is more than on&x-optimal

1 ) o code since compactness afitt-efficiency are preserved by
HP(X) = 1—a MEBIEI)?PX)IOg Z po(z) ) swapping codewords of the same length (andXif = 2,
reX then the second most likely element can be either assigned
© . or 1). In the presence of ties among probabilities, the value
B (Px) = {/“ X=[01]: ) ple)=1-¢ (8)  of ¢(f%(x)) for somez € X may depend on the choice of
zEX f%. The following result provides several relevant propsrtie
w(x) < Px(x), Vo € X}. of optimal codes.
L o Proposition 1: ([8], [19]) Fix a probability mass function
Thee-smooth Rényi entropy becomes the Rényi entropy wheR . o 3 finite setX’. The following results hold forPy-
e=0le, optimal codesf : X — {0,1}*:
Héo)(X) = Hy(X), a€(0,1)U(1,00). (7) @ The distribution of/(f% (X)) is invariant to the actual
choice of f%, and it only depends ofx.
. NON-ASYMPTOTIC BOUNDS FOROPTIMAL b) For every lossless data compression cgdend for all
FIXED-TO-VARIABLE LOSSLESSCOMPRESSION >0,

This section applies the improved bounds on guessing .
moments in [15, Section 3] to analyze non-prefix one-to-one PWf(X)) = r] = P[f(fx (X)) = T}' (10)
binary optimal codes, which do not satisfy Kraft's inequali ~ Furthermore, the inequality in (10) is strict for some> 0
These codes are one-shot codes that assign distinct catiew 5 if f is not Px-optimal.
to source symbols; their average length, which is smallan th i
the Shannon entropy of the source, is analyzed in [18]. D 27 UxED) <ogy (1 +]X)) (11)

zeX

A. Basic setup, notation and preliminaries . o . : e
. _ . ) i with equality if and only if|[X| + 1 is a positive integral
Definition 3: A variable-length lossless compression binary power of 2. Furthermore, all compact codes fmchieve

code for a discrete set is an injective mapping: the same value ofy" 2-4/(®) which is larger than that
* reX
frx—={0,1}* ={2,0,1,00,01,10,11,000,...}  (8) achieved by a non-compact code.
where f(z) is the codeword which is assigned toc X; Definition 7: The cumulant generating functiorof the
the length of this codeword is denoted tyf(z)) where codeword lengths oPy-optimal binary codes is given by
¢:{0,1}* = {0,1,2,...} with the convention that(@) = 0. A*(p) 2 1ogIE[2PZ(f§<(X))}, p€R. (12)

Definition 4: [19] A variable-length lossless source code is

compactwhenever it contains a codeword only if all shorter Re.mark 1:(12) is actually a sgaled cumulant generating
codewords also belong to the code. function. The cumulant generating function of a random

variable X is given by

1Unless explicitly stated, the logarithm base can be chosethé reader, pX
with exp indicating the inverse function dbg. Ax(p) = log, E[e ]7 peR (13)



whereas, following Campbell [3], it is more natural to studyhere
the function given by

_9l-p
X () — Lo 2051, sp =27, (24)
Xl = los B2 . m = [logy(1 + X)), @5)
Note, however, that (13) and (14) satisfy A =1logy(1 + |X]) —m € [0,1). (26)
Ax(p) = Ax(plog, 2) loge, (15)

Lemma 2:Let X be a random variable taking values on a

which implies that they can be obtained from each other Wlite setX, and letp # 0. Then, for an optimal binary code,

proper linear scalings of the axes.
As mentioned in the introduction, the cumulant generating 1

function of the codeword lengths provides an importantgtesi 0 10gE[2pg(fX(X))}
criterion. In particular, it yields the average length vieet 1 [ (X) @ |)}
equalit > sup - |H s (X)—logt(B,|X])|, (27)
auaty ) pe(-poonioy B L 70
tim 2 _ (5 (0)) (16) o
=0 p X ' wheret(-) is defined in (23).
Theorem 1:[5, Theorem 1] Ifp € (—co, —1], then The problem of guessing discrete random variables has been

extensively studied in the information theory literatused,
Hoo(X) —loglogy (1 +[X]) < —A"(p) < H(X), (17) e.g., [1], [11], [15] and references therein). The centtgeot
and, if p € (—1,0) U (0, 00), then of interest is the distribution (or the moments) of the numbe
. of guesses required to identify a realization of a random
H i (X)—loglog,(1+ |X]) < A*(p) < H_. (X). (18) variable X, taking values on a finite or countably infinite set
e P te X ={1,...,]X|}, by repeatedly asking questions of the form
By invoking the Chernoff bound and using Theorem 1, thds X equal tox?" until the value ofX is guessed correctly.
following result holds. A guessing functioris a one-to-one functio: X — X,
Theorem 2:[5, Theorem 2] For allH(X) < R < log|X|  which can be viewed as a permutation of the elementg’of
1 in the order in which they are guessed. The average number
log . > Sup{pR —pH 1 (X)} (19) of guesses is minimized by taking the guessing function to be
PIE(fx (X)) = R] ~ p>0 e ; ; ; i ;
the ranking functiongyx, for which gx(x) = k if Px(z) is
= D(Xa||X) (20)  the k-th largest mass [11]. Although the tie breaking affects
wherea € (0,1) is a function of R chosen so thaR = the choice ofgx, the distribution ofgx (X) does not depend

H(X,), and X, has the scaled probability mass function ©On how ties are resolved. Not only does this strategy mirémiz
the average number of guesses, but it also minimizeg-ihe

Px_(z) = L(f), reX. (21) moment of the number of guesses for every 0.
a;(PX(a) The following result tightens [1, Proposition 4] (see [15,

o . ection 3]):
B. Improved bounds on the distribution of the optimal cod% Lemma 3:Let X be a discrete random variable taking

lengths ) _ _ values on a set’, and letgx be the ranking function according
We provide bounds on the cumulant generating function agdl p,. . Then, for allp > 0,

the complementary cumulative distribution of optimal ldrgy
for lossless compression of a random variaKlavhich takes E[g% (X))
values on a finite seft. These bounds improve those in
Theorems 1 and 2, and in Section I1I-C we use them to derives {eXP (leiﬁ (X)) - 1} + eXP((P - 1)+H% (X))
non-asymptotic bounds for optimal fixed-to-variable lessl P (28)
codes. Due to space limitations, proofs are omitted here and
they are available in [15, Section 4].

We start by generalizing [5, Lemma 1] from = 1 to
arbitrary 5 € R.

Lemma 1:For an optimal binary code, and for ale R

where (z)* £ max{z,0} for z € R.

Lemma 4:Let X be a random variable taking values on a
finite setX, and letgx be a ranking function of. Then, for
every optimal binary code and for gl > 0,

1—-s%
A m B .
3o BUsE@) — (2% —1)s5' + 1—s5’ p#1 27" E[g% (X)] < E[20°Ux(XD] < E[g4 (X)) (29)
TEX m+ 2% — 1, p=1
(22)

This leads us to the following result:
a Theorem 3:Let X be a random variable taking values on a
=1, 1X]) (23)  finite setx. Then, for every optimal binary code, the cumulant



generating function in (12) satisfies « The non-asymptotic version of the source reliability func-
tion is given by

1 1
E,(R)= — log . (34)
20 n <P[% Ufen(Xm) > R])
p (30) In view of Theorems 3 and 4, the following result is

1 1 obtained (see [15]):
S H o (X)+ P 10g<1 I {1 - eXp( PH 1 (X))} Theorem 5:Consider a memoryless and stationary source
of finite alphabett, and letf%..: A™ — {0, 1}* be an optimal
) (31) compression code. Then, the following bounds hold:
a) Forallp>0
for all p > 0, wheret(-) is given in (23). Moreover, (30) also 1
holds forp < 0. sup % [H% (X) = —~ logt(B, |A|n)]
Proof: The lower bound in the left side of (30) is PECP o0}
Lemma 2, and the upper bound in the right side of (31) follows < An(p) (35)

from Lemmas 3 and 4. 1
< _
Remark 2:For p € (—1,0) U (0,00), loosening the bound ~ — PH L (X)+ 3 log(l +p {1 eXp( npH (X))]

1
sup ~|H s (X)—log t(B,|X
Be(—p,00)\{0} B [ ﬁ+p( (8 |)}
< Ao

+eXp((p—1)+H(X) pH 1 (X )

1
P 1+p

in the left side of (30) by the sub-optimal choice 6f= 1 N

and invokingt (1, |X]) < log,(1 + |X]) (in view of Lemma 1, +exp (” [(P — )T Hi(X) = pH 1 (X)D)
and since2” — 1 < x for x € [0, 1]) recovers the lower bound ] ] )

in (18). wheret(-) is as defined in (23).

Remark 3:The second term in the right side of (31) is nonb) For R < log| |

positive for allp > 1 [15]; due to the non-negativity of the
Rényi entropy, this also holds fere (0,1). Hence, forp > 0, En(R) = Zi% plt—pH (X)
the upper bound in (31) improves the bound in the right side ] 1
of (18). - = log(l— {1 — exp (—an% (X))]
The Chernoff bound and (31) readily yield the following " tr :
lower bound. +
+e —1)"Hi(X)—pH 1 (X
Theorem 4:In the setting of Theorem 3, faR < log|X]|, P (n [(p ) P( )~ pH, P( )D>( )
36
log 1 32 Remark 4:The non-asymptotic bounds on the cumulant
P[¢(f% (X)) > R] generating function in (35) recover the known asymptotic
1 result in [5, (29)] where for alp > 0
> sup{pR pH 1 (X) — log<? [1 — exp (—pH#(X))}
p=0 g ’ Alp) = lim An(p) = pH 1 (X), (37)
n—oo 1+p
- + 1 - 1 . . . . . . . . .
+exp ((p b H; (X) pHm (X))) } which, incidentally, coincides with Arikan’s asymptotigrfda-

mental limit for lim_ 1 logIE[an(X”)] whenX" is i.i.d. [1].

C. Non-asymptotic bounds for fixed-to-variable losslesg, hig end, note thaihm 1 Jog (1, ]A|") = 0, and selecting
source codes 8= 1in the left side of (35) yields

We consider the fixed-to-variable-length lossless compres . >
sion in Definition 6 where the object to be compressed nh_>—H;OA ( )—leiﬁ (X). (38)
2" = (x1,...,x,) € A™ is a string of lengthn (n is

Moreover, sinced,, (X ) is monotonically non-increasing im,
known to both encoder and decoder), whose letters are drawn

from a finite alphabett’ according to the probability mass pH_ (X) - (p - 1t Hy(X) > min{p, 1} H1(X) (39)

function Py (2") = ] Px (w;) for all 2™ € A™. We consider and, if X is non-deterministic, then the rightmost inequality

the following non-asymptotic measures for optimal fixed-tdn (35) and (39) yield
variable lossless compression: M Anlp) < pHL (X), (40)
o The cumulant generating function of the codeword
lengths is given by recovering (37) from (38) and (40). Furthermore, (36) ar®) (3
imply that

1 - n
An(p) :zﬁlogEPpg(fX"(X D], peR. (33)  E(R):= h_mEn(R)>bup{pR pH . (X)}. (41)

n— 00 p>0



Although, as noted in Remark 4, the improvement in the Remark 5:1f the maximal decoding error probability can-
bounds afforded by Theorem 5 washes out asymptoticalhgt be larger tharr € (0, 1), then neither of the bounds in
the following example illustrates the improvement in thevno Theorem 6 is superseded by the other, as can be verified by
asymptotic regime. The following example illustrates tloemn numerical experimentation.
asymptotic bounds in this work, and comparing them with the The reader is referred to [15, Section 5] for a discussion on
bounds in [5]. Due to space limitations, the reader is rerm Theorem 6, including numerical results of the new improved
to plots in the full paper version [15]. lower bounds in Theorem 6 with a comparison to [9].

Example 1:Consider a discrete memoryless source which
emitsn letters from the ternary alphabet = {a,b,c} with
Px(a) = 2, Px(b) = 2 and Px(c) = 1. The bounds on the []
cumulant generating function in [5, Theorem 1] (see (189) ar

given by [2]

pH_1 (X)— £ loglogy(1 + [A]") < An(p) < pH_ 1 (X)

for p > 0. For numerical results, see [15, Figures 3 and 4]
The match between the upper and lower bounds in Theorem
improves by increasing, and the tightening obtained by the [4]
lower bound in Theorem 5 can be significant for small
Furthermore, numerical results show the improvement of thg
lower bound on the non-asymptotic source reliability fumrct
E,(R) in Theorem 2 over the bound in (36) for small to
moderate values of.

[3

(6]
D. Variable-Length Source Coding Allowing Errors

Following a recent study by Kuzuoka [9], the analysis in[7]
[15, Section 5] leads to a derivation of improved lower baaind
on the cumulant generating function of the codeword lengthg
for variable-length source coding allowing errors (whidf,
contrast to the conventional fixed-to-fixed paradigm, are n
necessarily detectable by the decoder) by means of the bmo%%]
Rényi entropy in Definition 2. In contrast to [9], the bounds
[15, Section 5] are derived for source codes without the yrefi0l
condition when either the maximal or average decoding error
probabilities are limited not to exceed a given vatue [0,1). [11]

Theorem 6:Let X take values on a finite set, and let
f+ X — C be an encoder (possibly stochastic) with a finitgz]
codebookC C {0,1}*. Let¢: C — {0,1,...,} be the length
function of the codewords i@. Fix € € [0,1) andp > 0. [13]

1) If the averagedecoding error probability cannot be larger
thane, then [14]

L ogE {Qpafoc))} > sup 2
p

B>0

B

{H% (X) — log (8, ] X])

[15]
where Y (X) is thee-smooth Rényi entropy of order,
andt(-) is given in (23). [16]
If the maximaldecoding error probability cannot be larger

(17]
thane, then also

/_1) log E {2pf(f(X))}

2)

(18]

1 1 1
> sup = |H s (X)—logt(B,|X])| — = log ——.
BE(—p,0) B [ B+p 14 1—=¢ [19]
Proof: See [15, Section 5]. [ ]
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