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Abstract—Bounds on optimal guessing moments serve to
improve non-asymptotic bounds on the cumulant generating
function of the codeword lengths for fixed-to-variable optimal
lossless source coding without prefix constraints. Non-asymptotic
bounds on the reliability function of discrete memoryless sources
are presented as well. Lower bounds on the cumulant generating
function of the codeword lengths are given, by means of the
smooth Ŕenyi entropy, for source codes that allow decoding
errors.

Index Terms – Cumulant generating function, lossless
source coding, Rényi information measures.

I. I NTRODUCTION

One of the major achievements in information theory is the
development of lossless data compression algorithms, and the
derivation of the fundamental limits that establish the highest
achievable compression efficiency that is compatible with
perfect data recovery. For uniquely-decodable lossless source
coding, Campbell ([3], [4]) proposed the normalized cumulant
generating function of the codeword lengths as a generalization
to the frequently used design criterion of normalized average
code length. Campbell’s motivation in [3] was to control the
contribution of the longer codewords via a free parameter in
the cumulant generating function: if the value of this parameter
tends to zero, then the resulting design criterion becomes
the normalized average code length; on the other hand, by
increasing the value of the free parameter, the penalty for
longer codewords becomes more severe, and the resulting
code optimization yields a reduction in the fluctuations of the
codeword lengths. In [3], asymptotically tight upper and lower
bounds on the minimum normalized cumulant generating
function were obtained for discrete memoryless stationary
sources with finite alphabet. These bounds, expressed in terms
of the Rényi entropy, imply that for sufficiently long source
sequences, it is possible to make the normalized cumulant
generating function of the codeword lengths approach the
Rényi entropy as closely as desired by a proper fixed-to-
variable uniquely-decodable source code; moreover, a converse
result in [3] shows that there is no uniquely-decodable source
code for which the normalized cumulant generating functionof
its codeword lengths lies below the Rényi entropy. In addition,
this type of bounds was studied in the context of other various
coding problems, including guessing.

Kontoyiannis and Verdú [8] studied the behavior of the
best achievable rate and other fundamental limits in variable-
rate lossless source compression without prefix constraints.
In the non-asymptotic regime, the fundamental limits of
fixed-to-variable lossless compression with and without prefix
constraints were shown to be tightly coupled. Reference [8]
obtains non-asymptotic upper and lower bounds on the distri-
bution of codeword lengths, along with a rigorous proof of the
Gaussian approximation put forward in 1962 by Strassen [17]
for memoryless sources. An alternative approach was followed
by Courtade and Verdú in [5], where they derived non-
asymptotic bounds for the normalized cumulant generating
function of the codeword lengths for optimal variable-length
lossless codes without prefix constraints; these bounds areused
in [5] to obtain simple proofs of the asymptotic normality
and the reliability function of memoryless sources allowing
countably infinite alphabets.

In [10], Kostinaet al. studied the fundamental limits of the
minimum average length of lossless and lossy variable-length
compression, allowing a nonzero error probabilityε ∈ [0, 1)
for almost lossless compression. The bounds in [10] were
used to obtain a Gaussian approximation on the speed of
convergence of the minimum average length, which was shown
to be quite accurate for all but small blocklengths. In [7], Koga
and Yamamoto followed an information-spectrum approach to
obtain asymptotic properties of the codeword lengths for prefix
fixed-to-variable source codes, allowing decoding errors.This
work was refined in the non-asymptotic setting by Kuzuoka
[9], which bounds the cumulant generating function of the
codeword lengths via the smooth Rényi entropy.

Section II defines the Rényi measures used in this paper.
Section III provides improved bounds on the normalized
cumulant generating function of the codeword lengths for
fixed-to-variable optimal codes, and on the non-asymptotic
reliability function of discrete memoryless sources, tightening
the bounds by Courtade and Verdú [5]. Due to space limita-
tions, proofs are omitted here and appear in [15, Section 4].

II. U NCONDITIONAL AND SMOOTH RÉNYI ENTROPY

The information measures used in this paper apply to
discrete random variables. All the definitions in this section
extend in a natural way to random vectors.



Definition 1: [12] Let X be a discrete random variable
taking values on a finite or countably infinite setX , and let
PX be its probability mass function. The Rényi entropy of
orderα ∈ (0, 1) ∪ (1,∞) is given by1

Hα(X) = Hα(PX) =
1

1− α
log
∑

x∈X

Pα
X(x). (1)

By its continuous extension,

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣, (2)

H1(X) = H(X), (3)

H∞(X) = log
1

max
x∈X

PX(x)
. (4)

Another Rényi information measure used in this paper is the
smooth Rényi entropy, introduced by Renner and Wolf [14]
(after a different definition in [13]).

Definition 2: [14] Let X be a discrete random variable
taking values onX , and letPX denote the probability mass
function of X . Let α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, 1). The
ε-smooth Ŕenyi entropy of orderα is given by

H(ε)
α (X) =

1

1− α
min

µ∈B(ε)(PX )
log
∑

x∈X

µα(x) (5)

B(ε)(PX) ,
{
µ : X → [0, 1] :

∑

x∈X

µ(x) ≥ 1− ε, (6)

µ(x) ≤ PX(x), ∀x ∈ X
}
.

Theε-smooth Rényi entropy becomes the Rényi entropy when
ε = 0, i.e.,

H(0)
α (X) = Hα(X), α ∈ (0, 1) ∪ (1,∞). (7)

III. N ON-ASYMPTOTIC BOUNDS FOROPTIMAL

FIXED-TO-VARIABLE LOSSLESSCOMPRESSION

This section applies the improved bounds on guessing
moments in [15, Section 3] to analyze non-prefix one-to-one
binary optimal codes, which do not satisfy Kraft’s inequality.
These codes are one-shot codes that assign distinct codewords
to source symbols; their average length, which is smaller than
the Shannon entropy of the source, is analyzed in [18].

A. Basic setup, notation and preliminaries

Definition 3: A variable-length lossless compression binary
code for a discrete setX is an injective mapping:

f : X → {0, 1}∗ = {∅, 0, 1, 00, 01, 10, 11, 000, . . .} (8)

where f(x) is the codeword which is assigned tox ∈ X ;
the length of this codeword is denoted byℓ(f(x)) where
ℓ : {0, 1}∗ → {0, 1, 2, . . .} with the convention thatℓ(∅) = 0.

Definition 4: [19] A variable-length lossless source code is
compactwhenever it contains a codeword only if all shorter
codewords also belong to the code.

1Unless explicitly stated, the logarithm base can be chosen by the reader,
with exp indicating the inverse function oflog.

Definition 5: [19] Given a probability mass functionPX on
X , a variable-length lossless source code isPX -efficientif for
all (a, b) ∈ X 2,

ℓ(f(a)) < ℓ(f(b)) =⇒ PX(a) ≥ PX(b). (9)

Definition 6: [19] Given a probability mass functionPX on
X , a variable-length lossless source code isPX -optimal if it
is both compact andPX -efficient.

The optimality in Definition 6 is justified in Proposition 1.
Let f∗

X : X → {0, 1}∗ be a PX -optimal variable-length
lossless source code. If|X | < ∞, then
a) ∅ is assigned to the most likely element inX .
b) All the 2ℓ binary strings of lengthℓ are assigned to the

2ℓ-th through(2ℓ+1 − 1)-th most likely elements withℓ ∈
{1, . . . , ⌊log2(1 + |X |)⌋ − 1}. For example, 0 and 1 (or 1
and 0) are assigned, respectively, to the second and third
most likely elements inX .

c) If log2(1+ |X |) is not an integer, then codewords of length
⌊log2(1+ |X |)⌋ are assigned to each of the remaining1+
|X | − 2⌊log2(1+|X |)⌋ elements inX .

As long as|X | > 1, there is more than onePX -optimal
code since compactness andPX -efficiency are preserved by
swapping codewords of the same length (and, if|X | = 2,
then the second most likely element can be either assigned0
or 1). In the presence of ties among probabilities, the value
of ℓ(f∗

X(x)) for somex ∈ X may depend on the choice of
f∗
X . The following result provides several relevant properties

of optimal codes.
Proposition 1: ([8], [19]) Fix a probability mass function

PX on a finite setX . The following results hold forPX -
optimal codesf∗

X : X → {0, 1}∗:
a) The distribution ofℓ(f∗

X(X)) is invariant to the actual
choice off∗

X , and it only depends onPX .
b) For every lossless data compression codef , and for all

r ≥ 0,

P
[
ℓ
(
f(X)

)
≤ r
]
≤ P

[
ℓ
(
f∗
X(X)

)
≤ r
]
. (10)

Furthermore, the inequality in (10) is strict for somer ≥ 0
if f is notPX -optimal.

c)
∑

x∈X

2−ℓ(f∗

X(x)) ≤ log2(1 + |X |) (11)

with equality if and only if |X | + 1 is a positive integral
power of 2. Furthermore, all compact codes forX achieve
the same value of

∑
x∈X

2−ℓ(f(x)), which is larger than that

achieved by a non-compact code.
Definition 7: The cumulant generating functionof the

codeword lengths ofPX -optimal binary codes is given by

Λ∗(ρ) , logE
[
2ρ ℓ(f∗

X(X))
]
, ρ ∈ R. (12)

Remark 1: (12) is actually a scaled cumulant generating
function. The cumulant generating function of a random
variableX is given by

ΛX(ρ) = loge E
[
eρX

]
, ρ ∈ R (13)



whereas, following Campbell [3], it is more natural to study
the function given by

Λ̃X(ρ) = logE
[
2ρX

]
. (14)

Note, however, that (13) and (14) satisfy

Λ̃X(ρ) = ΛX(ρ loge 2) log e, (15)

which implies that they can be obtained from each other by
proper linear scalings of the axes.

As mentioned in the introduction, the cumulant generating
function of the codeword lengths provides an important design
criterion. In particular, it yields the average length via the
equality

lim
ρ→0

Λ∗(ρ)

ρ
= E[ℓ(f∗

X(X))]. (16)

Theorem 1:[5, Theorem 1] Ifρ ∈ (−∞,−1], then

H∞(X)− log log2(1 + |X |) ≤ −Λ∗(ρ) ≤ H∞(X), (17)

and, if ρ ∈ (−1, 0) ∪ (0,∞), then

H 1
1+ρ

(X)− log log2(1 + |X |) ≤
Λ∗(ρ)

ρ
≤ H 1

1+ρ
(X). (18)

By invoking the Chernoff bound and using Theorem 1, the
following result holds.

Theorem 2:[5, Theorem 2] For allH(X) < R < log |X |

log
1

P[ℓ(f∗
X(X)) ≥ R]

≥ sup
ρ>0

{
ρR− ρH 1

1+ρ
(X)

}
(19)

= D(Xα‖X) (20)

whereα ∈ (0, 1) is a function ofR chosen so thatR =
H(Xα), andXα has the scaled probability mass function

PXα
(x) =

Pα
X(x)∑

a∈X

Pα
X(a)

, x ∈ X . (21)

B. Improved bounds on the distribution of the optimal code
lengths

We provide bounds on the cumulant generating function and
the complementary cumulative distribution of optimal lengths
for lossless compression of a random variableX which takes
values on a finite setX . These bounds improve those in
Theorems 1 and 2, and in Section III-C we use them to derive
non-asymptotic bounds for optimal fixed-to-variable lossless
codes. Due to space limitations, proofs are omitted here and
they are available in [15, Section 4].

We start by generalizing [5, Lemma 1] fromβ = 1 to
arbitraryβ ∈ R.

Lemma 1:For an optimal binary code, and for allβ ∈ R

∑

x∈X

2−β ℓ(f∗

X(x)) =






(2∆ − 1)smβ +
1− smβ

1− sβ
, β 6= 1

m+ 2∆ − 1, β = 1
(22)

, t(β, |X |) (23)

where

sβ = 21−β , (24)

m =
⌊
log2(1 + |X |)

⌋
, (25)

∆ = log2(1 + |X |)−m ∈ [0, 1). (26)

Lemma 2:Let X be a random variable taking values on a
finite setX , and letρ 6= 0. Then, for an optimal binary code,

1

ρ
logE

[
2ρ ℓ(f∗

X (X))
]

≥ sup
β∈(−ρ,∞)\{0}

1

β

[
H β

β+ρ
(X)− log t(β, |X |)

]
, (27)

wheret(·) is defined in (23).
The problem of guessing discrete random variables has been

extensively studied in the information theory literature (see,
e.g., [1], [11], [15] and references therein). The central object
of interest is the distribution (or the moments) of the number
of guesses required to identify a realization of a random
variableX , taking values on a finite or countably infinite set
X = {1, . . . , |X |}, by repeatedly asking questions of the form
“Is X equal tox?” until the value ofX is guessed correctly.
A guessing functionis a one-to-one functiong : X → X ,
which can be viewed as a permutation of the elements ofX
in the order in which they are guessed. The average number
of guesses is minimized by taking the guessing function to be
the ranking functiongX , for which gX(x) = k if PX(x) is
the k-th largest mass [11]. Although the tie breaking affects
the choice ofgX , the distribution ofgX(X) does not depend
on how ties are resolved. Not only does this strategy minimize
the average number of guesses, but it also minimizes theρ-th
moment of the number of guesses for everyρ > 0.

The following result tightens [1, Proposition 4] (see [15,
Section 3]):

Lemma 3:Let X be a discrete random variable taking
values on a setX , and letgX be the ranking function according
to PX . Then, for allρ ≥ 0,

E[gρX(X)]

≤
1

1 + ρ

[
exp
(
ρH 1

1+ρ
(X)

)
− 1
]
+ exp

(
(ρ− 1)+H 1

ρ
(X)

)

(28)

where(x)+ , max{x, 0} for x ∈ R.
Lemma 4:Let X be a random variable taking values on a

finite setX , and letgX be a ranking function ofX . Then, for
every optimal binary code and for allρ > 0,

2−ρ
E[gρX(X)] < E

[
2ρ ℓ(f∗

X (X))
]
≤ E[gρX(X)]. (29)

This leads us to the following result:
Theorem 3:Let X be a random variable taking values on a

finite setX . Then, for every optimal binary code, the cumulant



generating function in (12) satisfies

sup
β∈(−ρ,∞)\{0}

1

β

[
H β

β+ρ
(X)− log t(β, |X |)

]

≤
Λ∗(ρ)

ρ
(30)

≤ H 1
1+ρ

(X) +
1

ρ
log

(
1

1 + ρ

[
1− exp

(
−ρH 1

1+ρ
(X)

)]

+ exp
(
(ρ− 1)+ H 1

ρ
(X)− ρH 1

1+ρ
(X)

))
, (31)

for all ρ > 0, wheret(·) is given in (23). Moreover, (30) also
holds forρ < 0.

Proof: The lower bound in the left side of (30) is
Lemma 2, and the upper bound in the right side of (31) follows
from Lemmas 3 and 4.

Remark 2:For ρ ∈ (−1, 0) ∪ (0,∞), loosening the bound
in the left side of (30) by the sub-optimal choice ofβ = 1
and invokingt(1, |X |) ≤ log2(1+ |X |) (in view of Lemma 1,
and since2x− 1 ≤ x for x ∈ [0, 1]) recovers the lower bound
in (18).

Remark 3:The second term in the right side of (31) is non-
positive for all ρ ≥ 1 [15]; due to the non-negativity of the
Rényi entropy, this also holds forρ ∈ (0, 1). Hence, forρ > 0,
the upper bound in (31) improves the bound in the right side
of (18).

The Chernoff bound and (31) readily yield the following
lower bound.

Theorem 4:In the setting of Theorem 3, forR < log |X |,

log

(

1

P
[

ℓ(f∗

X(X)) > R
]

)

(32)

≥ sup
ρ>0

{

ρR− ρH 1
1+ρ

(X)− log

(

1

1 + ρ

[

1− exp
(

−ρH 1
1+ρ

(X)
)]

+ exp
(

(ρ− 1)+ H 1
ρ
(X) − ρH 1

1+ρ
(X)

)

)}

.

C. Non-asymptotic bounds for fixed-to-variable lossless
source codes

We consider the fixed-to-variable-length lossless compres-
sion in Definition 6 where the object to be compressed
xn = (x1, . . . , xn) ∈ An is a string of lengthn (n is
known to both encoder and decoder), whose letters are drawn
from a finite alphabetX according to the probability mass

functionPXn(xn) =
n∏

i=1

PX(xi) for all xn ∈ An. We consider

the following non-asymptotic measures for optimal fixed-to-
variable lossless compression:

• The cumulant generating function of the codeword
lengths is given by

Λn(ρ) :=
1

n
logE

[
2ρ ℓ(f∗

Xn (Xn))
]
, ρ ∈ R. (33)

• The non-asymptotic version of the source reliability func-
tion is given by

En(R) =
1

n
log

(
1

P
[
1
n
ℓ(f∗

Xn(Xn)) ≥ R
]
)
. (34)

In view of Theorems 3 and 4, the following result is
obtained (see [15]):

Theorem 5:Consider a memoryless and stationary source
of finite alphabetX , and letf∗

Xn : An → {0, 1}∗ be an optimal
compression code. Then, the following bounds hold:
a) For allρ > 0

sup
β∈(−ρ,∞)\{0}

ρ

β

[
H β

β+ρ
(X)−

1

n
log t(β, |A|n)

]

≤ Λn(ρ) (35)

≤ ρH 1
1+ρ

(X) +
1

n
log

(
1

1 + ρ

[
1− exp

(
−nρH 1

1+ρ
(X)

)]

+ exp
(
n
[
(ρ− 1)+ H 1

ρ
(X)− ρH 1

1+ρ
(X)

]))

wheret(·) is as defined in (23).
b) ForR < log |X |

En(R) ≥ sup
ρ>0

{
ρR− ρH 1

1+ρ
(X)

−
1

n
log

(
1

1 + ρ

[
1− exp

(
−nρH 1

1+ρ
(X)

)]

+ exp
(
n
[
(ρ− 1)+ H 1

ρ
(X)− ρH 1

1+ρ
(X)

]))}
.

(36)

Remark 4:The non-asymptotic bounds on the cumulant
generating function in (35) recover the known asymptotic
result in [5, (29)] where for allρ > 0

Λ(ρ) := lim
n→∞

Λn(ρ) = ρH 1
1+ρ

(X), (37)

which, incidentally, coincides with Arikan’s asymptotic funda-
mental limit for lim

n→∞

1
n
logE[gρXn(Xn)] whenXn is i.i.d. [1].

To this end, note thatlim
n→∞

1
n
log t(1, |A|n) = 0, and selecting

β = 1 in the left side of (35) yields

lim
n→∞

Λn(ρ) ≥ ρH 1
1+ρ

(X). (38)

Moreover, sinceHα(X) is monotonically non-increasing inα,

ρH 1
1+ρ

(X)− (ρ− 1)+ H 1
ρ
(X) ≥ min{ρ, 1}H 1

ρ
(X) (39)

and, if X is non-deterministic, then the rightmost inequality
in (35) and (39) yield

lim
n→∞

Λn(ρ) ≤ ρH 1
1+ρ

(X), (40)

recovering (37) from (38) and (40). Furthermore, (36) and (39)
imply that

E(R) := lim
n→∞

En(R) ≥ sup
ρ>0

{
ρR− ρH 1

1+ρ
(X)

}
. (41)



Although, as noted in Remark 4, the improvement in the
bounds afforded by Theorem 5 washes out asymptotically,
the following example illustrates the improvement in the non-
asymptotic regime. The following example illustrates the non-
asymptotic bounds in this work, and comparing them with the
bounds in [5]. Due to space limitations, the reader is referred
to plots in the full paper version [15].

Example 1:Consider a discrete memoryless source which
emitsn letters from the ternary alphabetA = {a, b, c} with
PX(a) = 4

7 , PX(b) = 2
7 andPX(c) = 1

7 . The bounds on the
cumulant generating function in [5, Theorem 1] (see (18)) are
given by

ρH 1
1+ρ

(X)− ρ
n
log log2(1 + |A|n) ≤ Λn(ρ) ≤ ρH 1

1+ρ
(X)

for ρ > 0. For numerical results, see [15, Figures 3 and 4].
The match between the upper and lower bounds in Theorem 5
improves by increasingn, and the tightening obtained by the
lower bound in Theorem 5 can be significant for smalln.
Furthermore, numerical results show the improvement of the
lower bound on the non-asymptotic source reliability function
En(R) in Theorem 2 over the bound in (36) for small to
moderate values ofn.

D. Variable-Length Source Coding Allowing Errors

Following a recent study by Kuzuoka [9], the analysis in
[15, Section 5] leads to a derivation of improved lower bounds
on the cumulant generating function of the codeword lengths
for variable-length source coding allowing errors (which,in
contrast to the conventional fixed-to-fixed paradigm, are not
necessarily detectable by the decoder) by means of the smooth
Rényi entropy in Definition 2. In contrast to [9], the boundsin
[15, Section 5] are derived for source codes without the prefix
condition when either the maximal or average decoding error
probabilities are limited not to exceed a given valueε ∈ [0, 1).

Theorem 6:Let X take values on a finite setX , and let
f : X → C be an encoder (possibly stochastic) with a finite
codebookC ⊆ {0, 1}∗. Let ℓ : C → {0, 1, . . . , } be the length
function of the codewords inC. Fix ε ∈ [0, 1) andρ > 0.

1) If the averagedecoding error probability cannot be larger
thanε, then

1

ρ
logE

[
2ρ ℓ(f(X))

]
≥ sup

β>0

1

β

[
H

(ε)
β

β+ρ

(X)− log t(β, |X |)

]

whereH(ε)
α (X) is theε-smooth Rényi entropy of orderα,

and t(·) is given in (23).
2) If the maximaldecoding error probability cannot be larger

thanε, then also

1

ρ
logE

[
2ρ ℓ(f(X))

]

≥ sup
β∈(−ρ,0)

1

β

[
H β

β+ρ
(X)− log t(β, |X |)

]
−

1

ρ
log

1

1− ε
.

Proof: See [15, Section 5].

Remark 5: If the maximal decoding error probability can-
not be larger thanε ∈ (0, 1), then neither of the bounds in
Theorem 6 is superseded by the other, as can be verified by
numerical experimentation.

The reader is referred to [15, Section 5] for a discussion on
Theorem 6, including numerical results of the new improved
lower bounds in Theorem 6 with a comparison to [9].
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